Wind Science and Engineering

The main research themes in the curriculum are:

  • Bluff-body and Building Aerodynamics
  • Atmospheric Physics and Climatology
  • Fluid-structure Interaction and Aeroelasticity
  • Measurement and Simulation of the Wind
  • Non-synoptic winds, thunderstorms and downbursts
  • Transient aerodynamic and aeroelasticity
  • Wind Reliability and Risk
  • Wind Storms and Structural Vulnerability
  • Wind-excited Vibrations

The educational objectives of the program are accomplished through a committee with specific expertise in the areas of study of the program in a highly stimulating scientific environment.

The Coordinator of the Curriculum is Prof. Giuseppe Piccardo

CURRICULUM COMMITTEE

Some significant recent publications on this topic:

  • Alinovi E., Bottaro A. (2018). A boundary element method for Stokes flows with interfaces, J. Comput. Phys., Vol. 356: 261-281.
  • Alinovi E., Gribaudo M., Bottaro A. (2018). Fractal riblets, AIAA Journal, Vol. 56, No. 5: 2108-2112.
  • Becker N., Ulbrich U., Klein R. (2015). Systematic large-scale secondary circulations in a regional climate model. Geophysical Research Letters 42(10): 4142-4149 (doi 10.1002/2015GL063955).
  • Berardi R., Cambiaggi L. (2019). Prediction of slope movement effects on churches for the development of a fragility curve approach. Proc. CNRIG 2019 - VII Convegno Nazionale dei Ricercatori di Ingegneria Geotecnica “La Ricerca Geotecnica per la Protezione e lo Sviluppo del Territorio”, Springer Lecture Notes in Civil Engineering.
  • Blocken B. 2018. LES over RANS in building simulation for outdoor and indoor applications: a foregone conclusion? Building Simulation 11(5): 821-870 (Open Access doi.org/10.1007/s12273-018-0459-3).
  • Blocken B. 2015. Computational Fluid Dynamics for Urban Physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Building and Environment 91: 219-245 (doi:10.1016/j.buildenv.2015.02.015).
  • Blocken B. (2014). 50 years of Computational Wind Engineering: Past, present and future. Journal of Wind Engineering and Industrial Aerodynamics 129: 69-102 (doi 10.1016/j.jweia.2014.03.008).
  • Bovolenta R., Mazzuoli M., Berardi R. (2018). Soil bio-engineering techniques to protect slopes and prevent shallow landslides. Rivista Italiana di Geotecnica/Italian Geotechnical Journal, Anno LII, N.3, 44-65 (doi:10.19199/2018.3.0577-1405.44).
  • Burlando M., S. Zhang, and G. Solari (2018). Monitoring, cataloguing, and weather scenarios of thunderstorm outflows in the northern Mediterranean. Nat. Hazards Earth Syst. Sci. 18: 2309–2330 (doi: 10.5194/nhess-18-2309-2018).
  • Burlando M., D. Romanić, G. Solari; H. Hangan, and S. Zhang (2017). Field data analysis and weather scenario of a downburst event in Livorno, Italy on 1 October 2012. Mon. Wea. Rev. 145: 3507–3527 (doi: 10.1175/MWR-D-17-0018.1).
  • Carini M., Pralits J.O., Luchini P. (2015). Feedback control of vortex shedding using a full-order optimal compensator. Journal of Fluids and Structures 53: 15-25.
  • Naghib-Lahouti A., Hangan H., Lavoie P. (2015). Distributed flow forcing control in the wake of a blunt trailing edge profiled body using plasma actuators. Physics of Fluids 27(3): 035110-1/24 (doi 10.1063/1.4914406).
  • Nguyen C.H., Freda A., Solari G., Tubino F. (2015). Aeroelastic instability and wind-excited response of complex lighting poles and antenna masts. Engineering Structures 85: 264-276 (doi 10.1016/j.engstruct.2014.12.015).
  • Osinski R., Lorenz P., Kruschke T., Voigt M., Ulbrich U., Leckebusch G.C., Faust E., Hofherr T., Majewski D. (2016). An approach to build an event set of European windstorms based on ECMWF EPS. National Hazards and Earth System Sciences 16: 255-268 (doi 10.5194/nhess-16-255-2016).
  • Pagnini, L.C. (2010). Reliability analysis of wind excited structures. Journal of Wind Engineering and Industrial Aerodynamics 98: 1-9 (doi 10.1016/j.jweia.2009.08.010).
  • Pagnini L.C., Burlando M., Repetto M.P. (2015). Experimental power curve of small-size wind turbines in turbulent urban environment. Applied Energy 154: 112-121 (doi 10.1016/j.apenergy.2015.04.117).
  • Pagnini L.C., Piccardo G. (2017). A generalized gust factor technique for evaluating the wind-induced response of aeroelastic structures sensitive to vortex-induced vibrations. Journal of Fluids and Structures 70: 181-200 (doi 10.1016/j.jfluidstructs.2017.01.017).
  • Pagnini L.C., Piccardo G., Repetto M.P. (2018). Full scale behavior of a small size vertical axis wind turbine. Renewable Energy 127: 41-55.
  • Pepe G., Cevasco A., Gaggero L., Berardi R. (2017). Variability of intact rock mechanical properties for some metamorphic rock types and its implications on the number of test specimens. Bulletin of Engineering Geology and the Environment 76(2): 629-644 (doi 10.1007/s10064-016-0912-4).
  • Piccardo G., Pagnini L.C., Tubino F. (2015). Some research perspectives in galloping phenomena: critical conditions and post-critical behavior. Continuum Mechanics and Thermodynamics 27(1-2): 261-285 (doi 10.1007/s00161-014-0374-5).
  • Piccardo G., Tubino F., Luongo A. (2015). A shear-shear torsional beam model for nonlinear aeroelastic analysis of tower buildings. Zeitschrift für angewandte Mathematik und Physik ZAMP 66(4): 1895-1913 (doi 10.1007/s00033-014-0456-z)
  • Piccardo G., Poggi S., Solari G. (2018). Some critical issues on the distribution of the maximum value of the wind-excited response of structures. Probabilistic Engineering Mechanics, 54: 65-81 (doi: 10.1016/j.probengmech.2017.07.003).
  • Pralits J.O., Brandt L., Giannetti F. (2010). Instability and sensitivity of the flow around a rotating circular cylinder. Journal of Fluid Mechanics 650: 513-536.
  • Refan M., Hangan H. (2016). Characterization of tornado-like flow fields in a new model scale wind testing chamber. Journal of Wind Engineering and Industrial Aerodynamics 151: 107-121 (doi 10.1016/j.jweia.2016.02.002).
  • Repetto M.P., Burlando M., Solari G., De Gaetano P., Pizzo M. (2017). Integrated tools for improving the resilience of seaports under extreme wind events. Sustainable Cities and Society, 32: 277-294 (doi: 10.1016/j.scs.2017.03.022).
  • Ricci A., Burlando M., Freda A., Repetto M.P. (2017). Wind tunnel measurements of the urban boundary layer development over a historical district in Italy. Building and Environment 111: 192-206 (doi 10.1016/j.buildenv.2016.10.016).
  • Ricci A., Burlando M., Repetto M.P., Blocken B. (2019). Simulation of urban boundary and canopy layer flows in port areas induced by different marine boundary layer inflow conditions. Science of the Total Environment, 670: 876–892 (doi: 10.1016/j.scitotenv.2019.03.230).
  • Semeraro O., Pralits J.O., Rowley C.W., Henningson D.S. (2013). Riccati-less approach for optimal control and estimation: an application to two-dimensional boundary layers. Journal of Fluid Mechanics 731: 394-417.
  • Solari, G. (2016). Thunderstorm response spectrum technique: Theory and applications. Engineering Structures 108: 28-46 (doi 10.1016/j.engstruct.2015.11.012).
  • Solari G., De Gaetano P. (2018). Dynamic response of structures to thunderstorm outflows: response spectrum technique vs time-domain analysis. Engineering Structures, 176: 188-207 (https://doi.org/10.1016/j.engstruct.2018.08.062).
  • Torrielli A., Repetto M.P., Solari G. (2013). Extreme wind speeds from long-term synthetic records. Journal of Wind Engineering and Industrial Aerodynamics 115: 22-38 (doi 10.1016/j.jweia.2012.12.008).
  • Zampogna G.A., Magnaudet J., Bottaro A. (2019). Generalized slip condition over rough surfaces, J. Fluid Mech., Vol. 858: 407-436.
  • Zhang S., Solari G., Yang Q., Repetto M.P. (2018). Extreme wind speed distribution in a mixed wind climate. Journal of Wind Engineering and Industrial Aerodynamics, 176: 239-253 (https://doi.org/10.1016/j.jweia.2018.03.019).
  • Zhang S., G. Solari, M. Burlando, Y. Qingshan (2019) Directional decomposition and properties of thunderstorm outflows. J. Wind Eng. Ind. Aerodyn. 189: 71-90 (doi: 10.1016/j.jweia.2019.03.014).
Last update 28 March 2024